第82页

我的修仙之路 三春景 1373 字 2022-10-26

对于二十一世纪的学生来说,设未知数列方程是再正常不过的,但哪有什么‘再正常不过’?这些都是一代代数学学者们反复钻研、积累经验,然后总结出来的!

而一开始,思路总是会显得比较复杂。

在一元一次方程的问题上,古代中外都是如此。

现在修仙界也这样,如果可以表达成ax=b(并不是说解题者这样表达了,这个时候没有这样的表达法,只是说可以这样表达)这样的简单式子可以使用试位法。简而言之,就是先猜测x的值,根据a、b的数字大小大概猜测,带入之后如果不对,再猜另一个数。

总之使猜测的结果不断接近满足这个式子。

因为数字之间的关系足够简单,这样做是成立的!但怎么想都觉得太随意了……

但如果根据题干得到的式子是ax+b=c,那就很难使用试位法了(可别说可以移动常数项,最后得到ax=b这样的式子了,这种式子在其他人眼里本就不存在,只是甘甜这样表述而已)。

这种情况下,大家使用双设法。

即假设一个x的值,然后代入式子的左边,得到一个结果,和右边不符。然后又假设一个x的值,代入式子的左边,得到一个结果依旧和右边不符。这种情况下,用第一个假设x值乘以第二个假设x值时所得结果与真正右边值的偏差,又用第二个假设x值乘以第一个假设x值是所得结果与真正右边的值的偏差。

两个结果相减,除以两个偏差相减的结果,于是得到了正确的x值。

听起来完全像是玄学,完全不知道其中的道理,其实是有其原理的。

祖徽之挂上画着相似三角形的白板:“这是利用了‘比率’。”

这个时候不少弟子已经眼冒金星了,甘甜维持着清醒很大程度上也是因为她是站在更高的角度看这种解释,才能理清楚其中思路。如果她没有知道更多的数学知识,很有可能听到这里也要完蛋。

因为从理解上来说,这就太迂回了!而人的大脑总是倾向于‘直接’的。

按照仙师祖徽之的解释,还得先具备一定的三角形知识,然后了解一些比率的常识。问题是,这两个问题很多人都还没搞明白呢!

甘甜心里直接建坐标系了,(x,c)就是y=ax+b上的一个点,至于假设的x值和假设情况下得到的结果是直线上另外的点。

又是乘除,又是加减的,远离不过是同一条线上的斜率相等。